Trimite referat
Referatele si lucrarile oferite de Clopotel.ro au scop educativ si orientativ pentru cercetare academica.

TRANSLATIA

Materie: Matematica
Accesari: 6.228
Download-uri: 1.073
Nota: 7.93 (2998 note)
Am probleme cu acest referat!

1 2 3
4 5 6
7 8 9


Download Referat - TRANSLATIA
Publicitate:

Trimis de aurel
din 10 Martie 2006

Cercul
Fie r un numar real, r > 0 si O un punct din plan. Se numeste cerc de centru O si raza r, notat C(O,r), multimea punctelor M din plan pentru care OM = r. Prin raza se mai intelege si un segment OM unde M este pe cerc.

Pozitia unei drepte fata de cerc:
Daca distanta de la centrul unui cerc la o dreapta d este mai mica decat raza cercului atunci dreapta are doua puncte comune cu cercul si se numeste secanta

Daca distanta de la centrul unui cerc la o dreapta d este egala cu raza cercului atunci dreapta are un punct comun cu cercul si se numeste tangenta.Tangenta este perpendiculara pe raza corespunzatoare. Dintr-un punct exterior cercului se pot duce doua tangente la cerc. Segmentele determinate de punctul exterior si punctele de tangenta sunt congruente.

Daca distanta de la centrul unui cerc la o dreapta d este mai mare decat raza cercului atunci dreapta nu are puncte comune cu cercul si se numeste exterioara.Unui unghi i se poate circumscrie un cerc (cercul trece prin varfurile triunghiului). Centrul cercului circumscris este intersectia mediatoarelor laturilor triunghiului

Intr-un triunghi se poate inscrie un cerc ( cercul este tangent laturilor triunghiului). Centrul cercului inscris este intersectia bisectoarelor unghiurilor triunghiului.

Translatia
Translatia poate fi sugerata cu ajutorul ideii de miscare sau de deplasare. De exemplu, pentru a trasa o dreapta paralela cu o dreapta data folosind o rigla si un echer se procedeaza astfel: se suprapune una din laturile echerului pste dreapta data, se pune in contact rigla cu cealalta latura a echerului si se deplaseaza astfel incat o latura sa ramana in contact cu rigla.

Aceasta deplasare a echerului se numeste translatie si are propietatea ca cealalta latura a sa este tot timpul paralela cu dreapta data. (fig I. 66)

C C'
A B A' B'
Fig I. 66

Fie, acum, o placa rigida care se deplaseaza pe un plan astfel incat fiecare punct al placii descrie o dreapta. O astfe de deplasare se numeste miscare de translatie.
In figura I. 67 se considera o placa triunghiulara care are succesiv pozitiile ABC, A'B'C', A"B"C"

C C' C"
B B'
B' '
AA
A A' A"

Fig I.67
Comparand pozitia placii ABC cu pozita placii A'B'C' se observa ca vectorii AA', BB', CC', MM' sunt egali.
Se va defini translatia ca o transformare geometrica in care toate punctele unui plan se deplaseaza cu un acelas vector.
Fie v un vector nenul. Se numeste translatia de vector v o functie T prin care fiecarui punct M ii corespunde un punct T(M) = M ' astfel incat MM' = v . Puctul M' se numeste translatul punctului M (fig I.68).

M' = T(M) B' = T(B)
Fig. I.68
A' = T(A)
v C'= T(C)

Daca F este o multime de puncte din plan ( segment, unghi, dreapta, poligon, cerc etc.) se va nota cu T(F) multimea obtinuta prin translarea punctelor multimii F.

Daca se fixeaza un punct O al planului ( de exemplu originea unui reper cartezian) atunci pentru orice pereche de puncte M si M' = T(M) are loc relatia OM' = OM + v.

O translatie este determinata daca se da vectorul v sau daca se cunoaste translatul unui anumit punct adica o pereche M si M' = T(M) atunci v = MM'.

Daca este data o portiune din plan in care este desenat un caroiaj atunci acesta poate fi utilizat pentru a descrie o translatie; in figura I. 69 v = AA'

Fig .I.69

Proprietatile translatiei
Pentru doua puncte distincte A, B adca se noteaza A' = T(A), B' = T(B), atunci AB = A'B' si T(AB) = A'B' (fig. I.70) (translatia pastreaza lungimea, directia si sensul unui segment orientat).

A' M'
B'
v
Fig. I.170
A
M
B

Daca d este o dreapta atunci T(d) este o dreapta paralela cu ea (fig I.71) ( translatia pastreaza directia dreptlor)

v
Fig.I.71
v
d

Daca F este un poligon atunci T(F) este un poligon congruent cu F ( fig. ...

Atentie : Textul de mai sus este doar un preview al referatului, pentru a vedea daca continutul acestui referat te poate ajuta. Pentru varianta printabila care poate sa contina imagini sau tabele apasa butonul de 'download' !!!
Download Referat - TRANSLATIA
X

Raporteaza-ne problema !

Te rugam sa ne spui ce problema ai intampinat cu acest referat. Prin contributia ta acest site va deveni cea mai tare resursa de referate online din Romania. Iti multumim pentru sprijinul acordat!





Acest site foloseste cookies. Prin navigarea pe acest site, va exprimati acordul asupra folosirii cookie-urilor. Detalii aici OK
Confidentialitatea ta este importanta pentru noi

Clopotel.ro utilizeaza fisiere de tip cookie pentru a personaliza si imbunatati experienta ta pe Website-ul nostru. Te informam ca ne-am actualizat politica de confidentialitate pentru a integra cele mai recente modificari privind protectia persoanelor fizice in ceea ce priveste prelucrarea datelor cu caracter personal. Inainte de a continua navigarea pe Website-ul nostru te rugam sa aloci timpul necesar pentru a citi si intelege continutul Politicii de Cookie. Prin continuarea navigarii pe Website-ul nostru confirmi acceptarea utilizarii fisierelor de tip cookie conform Politicii de Cookie. Nu uita totusi ca poti modifica in orice moment setarile acestor fisiere cookie urmareste instructiunile din Politica de Cookie.


Am inteles